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VIBRATIONAL CONTROL OF A NONLINEAR ELASTIC PANEL

P.L. CHOW* AND L. MAESTRELLO?

Abstract. The paper is concerned with the stabilization of the nonlinear panel oscillation by an active

control. The control is actuated by a combination of additive and parametric vibrational forces. A general

method of vibrational control is presented for stabilizing panel vibration satisfying a nonlinear beam equation.

To obtain analytical results, a perturbation technique is used in the case of weak nonlinearity. Possible

application to the other type of problems is briefly discussed.
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1. Introduction. The problem under consideration is the stabilization of the nonlinear panel oscillation

by an active control with a vibrational actuator. This work was motivated by the recent experimental

investigations of the second author (Maestrello [1, 2]), who demonstrated clearly that the vibrational control

could be an effective means of stabilizing the boundary-layer flow as well as the panel vibration. This paper

will offer a general method of vibrational control and its application to the problem involving a nonlinear

elastic panel excited by the periodic wall-pressure fluctuation in a boundary-layer flow.

The general principle of active control, the vibrational control in particular, is to introduce an action

which affects a change in the behavior of a dynamical system in a desirable manner. In the boundary layer

transition control [1], the periodic heating and cooling of the wall induce a parametric vibration of the fluid

viscosity which, in turn, stabilizes the flow. In the case of panel vibration [2], a properly added vibrational

force with the same forcing frequency may result in suppressing the subharmonic oscillations (see Section

2). The suppression of subharmonics, of course, has the implication of controlling the chaotic motion.

The main idea of vibrational control stems from the fact that an inverted pendulum can be stabilized

at its upper equilibrium position when thc lower suspension point executes a rapid vertical vibration (see

e.g. [3]). Based on this idea, a general principle of vibrational control was proposed, notably by Meerkov [4],

to stabilize the equilibrium points of some finite-dimensional linear systems. Application of this principle

to reactor dynamics was done by Bellman et al. [5]. By contrast, in this paper, we will extend this control

principle to stabilize the periodic motions of infinite-dimensional systems, instead of equilibrium points in

finite dimensions. In addition to the high-frequency parametric vibrational control used in [4, 5], a vibrational

force with the same forcing frequency will be required. Unlike the usual feedback of feed-forward control,

the vibrational control does not need accurate measurement of the system inputs and outputs and can be

implemented much more easily, especially for an infinite-dimensional system under consideration.

In this paper we consider the panel vibration which satisfies the initial boundary value problem for the
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nonlinearbeamequation[6]:

mO2w+ cOtw - [Q + g(t)]O_w + DO_w = Ap(t, z), 0 < x < l
(1.1) wit , O) = w(t, l) = O,a_w(t, o) = O_w(t, l) = o,

w(0,x) = w0(x), x) =

Here w denotes the transverse deflection; 0t, 0x... are the partial differentiations in t, x...; the positive

constants m, c and D represent the unit mass, the damping coefficient and the bending stiffness of the panel,

respectively. The axial force Q is positive or negative according to the force being tensile or compressive.

The large panel deflection introduces an additional tension N(t) given by

(1.2) N(t) = b IO_w(t,x)12dx,

where b is an elastic constant. The forcing term Ap denotes the pressure difference across the panel surfaces.

The homogeneous boundary conditions mean that thc panel is simply supported, and the initial data w0

and wt are given. Suppose that, without any control, the periodic solution of equation (1.1) excited by the

pressure Ap is unstable. Our problem is to Stabilize the panel Oscillation by applying an appropriate control

in the form of vibrational forces added to the axial force and the pressure Ap.

The paper is organized as follows. TO illustrate the basic ideas in Sectioninvolved, 2, we consider the

control of the Duffing equation, for which the response characteristics to a time-harmonic excitation is well

known. The feasibility of the vibrational control can be discussed geometrically by referring to the response

curves. Since the app_licability of Vibrational control is not limited t:o the structure dynamics, in section

3, a general method of vibrational control for a class of nonlinear evolution equations is presented. For a

given unstable periodic solution, the control strategy is to shift the Liapunov exponent r of the vibrational

equation to the negative half-line so that the corresponding periodic solution becomes stable. This method

is applied to the nonlinear panel vibration problem satisfying equation (1.1). For weak nonlinearity, analytic

results are obtained by a perturbation analysis and the case ofsingle-mode excitation is workcd out in detail.

Finally, in Section 5, some concluding remarks are made and other possible applications such as the flow

stabilization problem are mentioned.

2. Control of Dutting's Equation. Before dealing with the nonlinear beam equation (1.1), we con-

Sidcr the Duffing equation

(2.1) -_-#_ + 5y _- _y3 __ F coswt,

where the dot denotes the time derivativc, the constants #, 5,/7, and F are assumed to be positive here, and

w > 0 is the forcing frequency. For small F, by perturbation analysis [7], it is known that equation (2.1) has

a periodic solution of the form

(2.2) y = Acos(wt + O)

for some phase shift 0, where the amplitude A is related to thc frequency w by the response equation [8].

(2.3) - 5)A- 4/_Aa + #aj2A _ = F _ .
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FIG. 2.1. Response curves for harmonic oscillation

By varying the value of F, equation (2.3) yields a family of response curves in the {A[-w plane. Referring

to Fig. 2.1 for F = F0, F1, the solid portion of the curve corresponds to the stable regime for thc periodic

solution (2.2), while the dotted part of the curve (between two points of vertical tangency) renders the

solution unstable. With the frequency w fixed, point U on the F0-curve is unstable, but, by changing F0 to

F1, point U moves up to point S on the Fl-curve becoming a stable point. Therefore, in this case by adding

an in-phase force with the same frequency, an unstable periodic motion can be stabilized. On the other

hand, if the forcing amplitude F is large, the system may exhibit a subharmonic response. For examplc,

consider the case of subharmonic response with frequency _. Again, by a perturbation analysis, it is found

that equation (2.1) has a subharmonic solution of the form [8]:

y = A eos(wt + 01) + B cos t + 02

where A, B and 01,02 are the corresponding amplitudes and phases, which satisfy some response equations.

For the subharmonics, the equation reads

(2.4) w2 = 9_ + -¥7 (_ + 2/2) 4- _ #2

with f ----9F/8. For F -- F0, FI with FI > F0 > 0, the response curves associated with (2.4) are given in

Fig. 2.2. Note that for w = wo, point P on the F0-curve corresponds to a subharmonics with amplitude

r0. However, this subharmonics will disappear when F changes from Fo to FI, since w < w0, and wl is the

smallest frequency for the existence of a subharmonics at F - Ft. This may explain qualitatively why a

subharmonic vibration can be suppressed in the experimental investigation [2] by an additive periodic force,

which has the effect of changing the forcing amplitude F.

In contrast with the additive vibrational control, the control can be applied parametricaUy. For instance,

we regard the Dumng equation (2.1) as an approximate equation for an inverted pendulum near the upper

equilibrium position (y = 0), for which c_ --- -_ < 0. Clearly y = 0 is an unstable equilibrium. If the

suspension point vibrates at a high frequency u >> w, the equation (2.1) should be replaced by [3]

(2.5) + + - z + 3 = F cos  ,
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FIG. 2.2. Response curves for subharmonic oscillation

where p(7) = p(T + 2_r) is a periodic function. Without the control p, a periodic motion about y ---- 0 is

obviously unstable. However, by the method of averaging [3], equation (2.5) can be closely approximated by

the averaged equation (see Section 4):

(2.6)

where < p >= 0 and

_)+ #$ + [<p2 > -5] y+fly3 = Fcoswt,

1
<pn>=2__j0 p"(r)d%forn= l,2.

Therefore, if a =< p2 > -5 > 0, the periodic motion can now bc stabilized as before.

The above examples show the possibility of stabilizing periodic motions by vibrational control. As a

generalization we consider the following control problem:

(2.7)

where f(A, v) = f(A, r + 2r) and h(A, _-, z) = h(A, 7 + 2r, z) are periodic functions; A is a control parameter

and h is a certain control function with h(0, ut, y) 0 and w, v are the vibration frequencies with u >> w.

The uncontrolled case corresponds to A = 0 and h = 0. Of course the equations (2.1) and (2.5) are special

cases of (2.7). Suppose that z = _q(t) is an unstable periodic solution of equation (2.7) when A = 0 and

h = 0. The control objective is to choose the control parameter _ and function h so that the corresponding

periodic soiution z = _a(A,t) with _(o,t) _0(t), becomes asymptotically stable. This means analytically

that the variational equation for y - (z - _a) from (2.7) has only exponentially decaying solutions. More

precisely, if

= }In ly(t){,

then we must choose A and h such that r < 0. Obviously, unlike the optimal control, such a control, if

possible, is far from unique. The choice of A and h, though guided by physical feasibility, is mostly up to the

personal preference/inwhat follows, this control principle will be generalized to deal with nonlinear partial

differential equations.

'Jl 1 ]:



3. Stabilization of Nonlinear Evolution Equations. In the theoretical discussion, it is convenient

to consider the partial differential equations of interest as a nonlinear evolution equation of the form

{ d_ = B(u) + F(A, oat) + H(A, vt, u),
(3.1) a

u(0) = h,

where u(t) is a vector in some infinite-dimensional vector space V with initial state h. The operator B is

nonlinear, F(A, r) = F()_, r + 2rr) and H(A, T, U) = H()_, 7- + 27r, u) are periodic with control parameter A,

being a scalar or vector. The control function H acts parametrically with rapid oscillations so that _, > > co.

When _ = 0, H(0, r, u) = 0 and the system (3.1) is uncontrolled. We are interested in stabilizing a periodic

motion which is unstable at )_ -- 0. If the equilibrium solution u0 of (3.1) at A = 0 is also unstable, we

introduce a parametric vibrational control H to stabilize it as in the case of an inverted pendulum. The

effect of H can be examined by the method of averaging [3]. By a change of time from t to a = t/E with

---- l/v, the system (3.1) can be approximated by the averaged equation

{ d_ = B(u) + F(_, cot)+ [_(_,u),(3.2) a
u(0) = h,

where

1 f0 2_r(a.3) _(_, u) = (U()_, vt, u)) = _ H(A, r, u)dr.

The function H should be chosen so that the equilibrium solution of ul of the averaged equation (3.2)

becomes stablc. Without control ()_ = 0), let u = ¢0(t) be an unstable periodic solution of equation (3.1)

near u0. In addition to the parametric control H, we have modulated the forcing function F(_, cot) by tuning

the control parameter )_ so that the corresponding periodic motion satisfying the averaged equation (3.2) is

asymptotically stable. To this end let us consider the variational equation of (3.2) for v = (u - ¢):

(3.4) _-g = Bl(¢,v) + Hl()_, ¢, v),
v(0) = g,

where

Bl(¢,v) = B(v+¢)-B(¢),

H1 ()_, ¢, v) = //(_, v + !b) -/2/(*_, ¢),

and g is an initial vector in V. Let [Ihll denote the magnitude (norm) of vector h. The control objective is

then to choose function H and parameter ), in such a way that the Liapunov exponent r is negative,

(3.5) r(k, H) = lira lln llv(t)ll < 0,
t_ t

for all g with Ilgll < a with some 5 > 0. For small 5, the variational equation (3.4) can be linearized to give

{ dv = A(£,t)v,
(3.6) av(0) = g,

where A(A, t) is a linear operator defined by

(3.7) A()_, t)v = {B,, [qa()_,t)] + H_ [)_,¢(A, t)]} v,



d_B v
and B_(v) = _n_--_,H_(,_,v) = _ are the linearized operators of B and H at v. Note that Z()_,t) is

periodic with the same period T as that of _b. _i_w, if V is finite-dimensional and A(A, t) is a matrix, then,

by the Floquet theory [7], the solution of equation (3.6) can be expressed as

(3.8) v(t) -_P(t)etn g,

where P(t) = P(t + T) is a periodic matrix, and R is a constant matrix. The smallest real part of the

eigenvalues of R yields the Liapunov exponent r. Of course the representation (3.4) holds for any finite-

dimensional approximation of equation (3.4). Unfortunately, even the periodic function ¢ is known, the

analytical computation of the Liapunov exponent r through either (3.5) or (3.8) is impossible without

simplifying assumptions. For example, for small amplitude vibration, the nonlinearity is weak so that the

perturbation method and an eigenfunction expansion can be applied. This procedure will be illustrated in

the application to the panel vibration problem.

4. Vibrational Control of Elastic Panel. By redefining the constants in the nonlinear beam equation

(1.1) under a vibrational control, it yields

(4.1) Oyw + _O,w - (_ +/3110xwl 12) Oxw + _O2w = p(,X, _t, x) + h(A, _t, x, w)

where the initial-boundary conditions are omitted, and

(4.2) I[0_wil 2 = lO_wl2dx

(4.3) p(A, wt, x) = Ap(wt, x) + Pl (A, wt, x),

Pl and h are the additive and parametric control forces with frequencies w >> v. The physical constants

p,/3, "_ arc positive, while c_ is positive or negative depending on the axial force being tensile or compressive.

Without control, we assume that, at A = O, pl(O,x, 7) = h(O,a,x,w) = O. To be specific, we choosc the

parametric control to be a vibrational axial force of the form

(4.4) h(A,.t, x, = .t)O w,

where

cl = Otq(A, ut)

with

(4.5) < q >=< _ >= 0

Now let Ul = w and u2 defined by

(4.6)

Then equations (4.1) and (4.6) yield

(4.7)

izl = u2 -F q( A, vt)i92xu1

-q(O2zu2- qO ul) + p(A,wt, x).

!il :HI:



We set

u=[ ul]u2

and rewrite the equations (4.6) and (4.7) in the form (3.1):

du

d--t = B(u) + f()_, wt) + H(A, wt, u),(4.8)

where

(4.9)
B(u) : _ {#u2 - (_ +/3 l[0..ulll 2) 02ul + 9"04Ul ) '

(4.10)

and

F(_,wt)=[ 0 ]p(A, wt, .) '

qO2u 1 ](4.11) H(A, ut, u) = -pqO_ul - q20_xUl - qO_u2 "

In view of equations (4.5) and (4.9) (4.11), by taking the time-average of equation (4.8) in a = ut with

"r = wt fixed, we get

d__uu_= B(u) + F(A, wt) +/:/(A, u),
dt

(4.12)

where

(4.13) /:/(,k, u) = [ 0 ]_ < q2 _, 04xUl "

We note that the average equation (4.12) yields a scalar equation for w = ul as follows,

(4.14) O_w + ,a_w - (_ + Zila_w[12) a_w + (9"+ < q2 >)w = p(_,wt, x),

which shows that the high-frequency axial vibrational force q(A, ut) has the effect of increasing the bending

stiffness 9' by the magnitude of < q2 >. Thus it stabilizes the system statically in general. Now let

= ¢0(t) = ¢02(t)

be an unstable periodic solution of equation (4.8) when ), = 0(H = 0), and let

u=¢(J"t)=[ ¢1('_'t)]¢2(,_, t)

be a periodic solution of equation (4.14) with ¢(0, t) = Co(t). Define v = (u - ¢) so that v satisfies the

variational equation (3.4). Here it can be written in the form

(4.15) dv
d---[= A( A, t)v +/3G(,\, t, v),



where A is a periodic linear operator and G is a nonlinear mapping defined as

Av = fl ' I2 '

and

fl : --#V2 -1- (n-t- < q2 > _]__[ [0x_)lI[ 2) O_V12 ___ 2_(0x_1, _xVl)Ox2_._I __ _O4Vl '

with the inner product notation

/0'(g, h) = g(x)h(x)dx.

When the nonlinear term G is dropped, equation (4.15) yields a generalized Hill's equation, a linear partial

differential equation with periodic coefficient:

(4.16) dvd---t: A(A, t)v.

For computational purposes, introduce a complete set of orthonormal functions (en}, which may be the

eigenfunctions associated with the linearized problem, or en(x) = V/_ sin _X' n -- 1, 2, ... By the expansion

of the solutions of (4.12) and (4:15) into terms of e:s as follows,

oo o_

u : :
n=l n=l

their coefficients satisfy the infinite systems of coupled ordinary differential equations of the form:

du---!= Bi(ul,..., u=, ...) + Fi(A, t) +/2/i (A, Ul, ..., Un, ...),
dt

oo

dvi = y_ aij (A, t)vj, i = 1, 2,..., n,

where aij = (Aei, ej). The above systems can only be solved numerically for truncated systems of low

dimensions. As mentioned before, if the nonlinear effect is weak, we can apply the perturbation analysis to

approximate solutions analytically. To this end let us assume that the damping coefficient and the forcing

amplitude are small. By proper scaling with respect to a small parameter _ > 0, the equation (4.14) is

rewritten as

(4.17) O_w + e#Otw -- (5 + e_ll0xwll 2) 02xw + "yO_w = ep(A, wt, x),

for which we assume a > 0 and set < q2 >= 0 for simplicity. It remains to study the problem of additive

control. To illustrate the perturbation procedure, we will analyze the case of single-mode excitation in some

detail.

Let us consider the case of nth mode harmonic excitation in (4.17):

(4.18) p(A, wt, x) F(A) n_r= sin -/-x cos _ot, n = 1, 2...

where the control parameter A modulates the forcing amplitude F and F0 F(0) is the uncontrolled

amplitude. Then the equation (4.17) admits a single-mode solution

(4.19) w = zn(t) sin nTrT

!:l | I
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FIG. 4.1. Response curves for different modes of excitations

and zn satisfies the Duffing equation:

_, + ¢t_ + a,z, + e_,z_ = zF(),) coswt,(4.20)

where

o,,, = [,_+,_(¥)2] (¥)2,
t3n = 2 _TJ "

The perturbation analysis of Duffing's equation has been discussed by many authors (see e.g.

we adopt the method of averaging by letting

(4.21) z, = Yl (t) sin wt + Y2 (t) cos wt

with

[3, 7]). Here

Yx sin wt + _t2cos wt = 0

which are substituted into (4.20) to give

f yl = _ [shy2- ]Znlyl2y2+ ,wyl + F(_)],
(4.22)

Y2 -1

with am = (w 2 - a,) and lyl_ = y_ + y_. In the polar form, y_ = r sin _o,y2 = rcos_, this equation becomes

÷= _R(_, _,_1,= _¢(_, _, _),
(4.23)

where

(4.24)

The solution (4.21) can be written as

(4.2_)

R = ttwr - F sin _a= 5. - ]_.r 2+ _ cos_.

_. = ,-(t)cos[,_t+ v(t)].



Therefore, for Zn being periodic with frequency w, r and _ must be constants, which correspond to the

equilibrium point (_, 95) of equation (4.23) satisfying

(4.26) _ R(f, 95,w) -- 0

( ¢(_, 95,_) = 0.

By taking equation (4.24) into account, the above equation can be solved approximately to give

(4.27) 6,_e -- /_n? _3 q-/._e2W 2 = F2(A),

which, by a change of notation, agrees with the response relation (2.3). Therefore for each n, the response

curves are shown in Fig. 2.1. Schematically, for n = 1, 2, ..., the response curves are plotted in Fig. 4.1.

Geometrically the control strategy is to steer an unstable point Un on the Fo-curve to a stable point Sn on

the Fl-curve. Analytically the stability of a periodic solution is now reduced to that of an equilibrium point,

which can be checked more easily. To do so we form the first variational equation of (4.23) about (?, 95) =

2u,, '

(4.28) 8 = 1 _p+_r),

where P_ = OrR(_,95,._),h_ = O_R(_,95,_) and so on. Let _(_) denote an eigenvalueof the coemcient
matrix of (4.28). It can be readily verified that, by making use of (4.24) and (4.27), if

(4.29) D(A) = (/5__ _) > 0,

then Re y(A) < 0 so that the steady state (f, 95) is stable. This is of course the stability condition for the

associated periodic solution. After computing the partial derivatives in (4.29), it yields

(4.30) D()_) _- (3Bn_2 - _n) (_fl,_2 __ 5n) + #_W2 > 0,

with 5n = (W2 -- an). The above inequality determines the stability regime S in the _ - w plane. In view of

(4.27), _(A) depends on the control parameter ),, which will take an unstable point into the stable regime S.

Note that from (4.30), we can get a simple sufficient stability condition:

(4.31)
4

or

9
02 2

> an + _Dne2A.

The above inequalities give rise to stable (shaded) sub-regions as shown in Fig. 4.2.

In general, all modes are excited by periodic pressure fluctuations. For instance, consider the harmonic

forcing (4.18) with a general spatially dependent amplitude

(4.32) p(,X,_t, z) = F(,X,z) cos_t.

If the axial load is compressive (a < 0) and slightly exceeds the lowest buckling load .y(_)4, the parametric

control q(ut) can still be used to stabilize the system statically by choosing < q2 >> lal. So we remain to

consider equation (4.17) by assuming _ > 0 there. To apply the above perturbation procedure, we need to

i

I0

[[1 !1 ]:



Fro. 4.2. Stability regions (shaded) for different modes of excitations

expand w in (4.17) and F in (4.32) into infinite series with respect to the modal function en(x) = y/_sin

for n = 1, 2, ... The resulting infinite system of coupled nonlinear differential equations for the coefficient

functions can then be treated by a perturbation analysis. Such a procedure developed previously for nonlinear

wave equations by one of us (Chow [9]) can be applied here. However, unlike the single mode situation,

simple stability conditions such as (4.30) or (4.31) are no longer attainable. Though it is possible to study

the stability r6gime numerically after a finite-mode approximation, this has not yct been done.

5. Concluding Remarks. In the paper we present a general method of vibrational control for a

certain class of nonlinear evolution equations with a particular reference to the nonlinear beam equation

arising from the panel structure dynamics. The control consists of a high frequency parametric vibration

and the forcing amplitude modulation. The high-frequency control is to affect a change in system parameter

for static stability, while the additive control of the excitation force, if needed, is to stabilize an unstable

periodic motion. In application to the panel structure, we show that, for a periodically excited panel near a

buckled state, a high frequency oscillatory axial force can keep the system in the state of periodic motion,

which can then be stabilized by an additive force modulation. The reason that we only control the force

amplitude, instead of both the amplitude and phase is that the additive control is the most effective when it

is in phase or out of phase with the excitation force. For a small forcing amplitude, a perturbation technique

can be used to reduce the stabilization of a periodic motion to that of an equilibrium point, the latter of

which is much simpler to analyze. In the case of a single-modal approximation, the stabilization problem

can be studied numerically but has not yet been treated. The vibrational control principle described in this

paper can also be applied to other problems such as the flow stability control. Here the nonlinear evolution

equation is given by the Navier-Stokes equation. For a slightly unstable flow, the perturbation analysis by

Keller and Kogelman [10] can be employed to deal with the flow stabilization by vibrational control.

11
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